Fuzzy Sets and Fuzzy Logic

## Crisp sets

- Collection of definite, well-definable objects (elements).

Representation of sets:

- list of all elements

$$
A=\left\{x_{1}, \ldots, x_{n}\right\}, x_{j} \in X
$$

- elements with property $P$ $A=\{x \mid x$ satisfies $P\}, x \in X$
- Venn diagram

- characteristic function $f_{A}: X \rightarrow\{0,1\}$,
$f_{A}(x)=1, \Leftrightarrow x \in A$
$f_{A}(x)=0, \Leftrightarrow x \notin A$
Real numbers larger than 3:


## Crisp (traditional) logic

- Crisp sets are used to define interpretations of first order logic

If $P$ is a unary predicate, and we have no functions, a possible interpretation is
$A=\{0,1,2\}$
$P^{I}=\{0,2\}$
within this interpretation, $P(0)$ and $P(2)$ are true, and $P(1)$ is false.

- Crisp logic can be "fragile": changing the interpretation a little can change the truth value of a formula dramatically.


## Fuzzy sets

- Sets with fuzzy, gradual boundaries (Zadeh 1965)
- A fuzzy set $A$ in $X$ is characterized by its membership function $\mu_{A}: X \rightarrow[0,1]$

A fuzzy set A is completely determined by the set of ordered pairs
$\mathrm{A}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{X}\right\}$
$X$ is called the domain or
Real numbers about 3:
universe of discourse


## Fuzzy sets on discrete universes

- Fuzzy set $\mathrm{C}=$ "desirable city to live in" $\mathrm{X}=\{\mathrm{SF}$, Boston, LA $\}$ (discrete and non-ordered) C $=\{($ SF, o.9), (Boston, o.8), (LA, o.6) $\}$
- Fuzzy set A = "sensible number of children" $\mathrm{X}=\{0,1,2,3,4,5,6\}$ (discrete universe) $\mathrm{A}=\{(0, .1),(1, .3),(2, .7),(3,1),(4, .6),(5, .2),(6, .1)\}$


Numberof Children

## Fuzzy sets on continuous universes

- Fuzzy set B = "about 50 years old"

$$
\begin{aligned}
& X=\text { Set of positive real numbers (continuous) } \\
& B=\left\{\left(x, \mu_{B}(x)\right) \mid x \text { in } X\right\} \\
& \mu_{B}(x)=\frac{1}{1+\left(\frac{x-50}{10}\right)^{2}}
\end{aligned}
$$

## Membership Function

## formulation

## Triangular MF:

$$
\operatorname{trimf}(x ; a, b, c)=\max \left(\min \left(\frac{x-a}{b-a}, \frac{c-x}{c-b}\right), 0\right)
$$

Trapezoidal MF:

$$
\operatorname{trapmf}(x ; a, b, c, d)=\max \left(\min \left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right), 0\right)
$$

Gaussian MF:

$$
\operatorname{gaussmf}(x ; a, b)=e^{-\frac{1}{2}\left(\frac{x-a}{b}\right)^{2}}
$$



## MF formulation

(a) Triangular MF

(c) Gaussian MF

(b) Trapezoidal MF

(d) Generalized Bell MF


## Fuzzy sets \& fuzzy logic

- Fuzzy sets can be used to define a level of truth of facts
- Fuzzy set $\mathrm{C}=$ "desirable city to live in"

$$
\begin{aligned}
& \mathrm{X}=\{\mathrm{SF}, \text { Boston, LA }\} \text { (discrete and non-ordered) } \\
& \mathrm{C}=\{(\mathrm{SF}, \mathrm{o.9}),(\text { Boston, o.8), (LA, o.6) }\}
\end{aligned}
$$

corresponds to a fuzzy interpretation in which $C(S F)$ is true with degree 0.9
$C$ (Boston) is true with degree o. 8
$C(L A)$ is true with degree 0.6
$\rightarrow$ membership function $\mu_{C}(x)$ can be seen as a (fuzzy) predicate.

## Notation

Many texts (especially older ones) do not use a consistent and clear notation

X is discrete
$A=\sum_{x_{i} \in X} \mu_{A}\left(x_{i}\right) / x_{i}$
$A=\sum_{x_{i} \in X} \mu_{A}\left(x_{i}\right) x_{i}$

X is continuous

$$
\begin{aligned}
& A=\int_{X} \mu_{A}(x) / x \\
& A=\int_{X} \mu_{A}(x) x
\end{aligned}
$$

Note that $\Sigma$ and integral signs stand for the union of membership grades; "l" stands for a marker and does not imply division.

## Fuzzy partition

Fuzzy partition formed by the linguistic values "young", "middle aged", and "old":


## Support, core, singleton

- The support of a fuzzy set A in X is the crisp subset of X whose elements have non-zero membership in $A: \operatorname{supp}(A)=\{x \in X \mid$ $\left.\mu_{\mathrm{A}}(\mathrm{x})>0\right\}$
- The core of a fuzzy set $A$ in $X$ is the crisp subset of $X$ whose elements have membership 1 in $A: \operatorname{core}(A)=\left\{x \in X \mid \mu_{A}(x)=1\right\}$



## Normal fuzzy sets

- The height of a fuzzy set A is the maximum value of $\mu_{\mathrm{A}}(\mathrm{x})$
- A fuzzy set is called normal if its height is 1 , otherwise it is called sub-normal



## Set theoretic operations

## /Fuzzy logic connectives

- Subset:

$$
A \subseteq B \Leftrightarrow \mu_{A} \leq \mu_{B}
$$

- Complement:

$$
\bar{A}=X-A \Leftrightarrow \mu_{A}(x)=1-\mu_{A}(x)
$$

- Union:
(Specific case)

$$
C=A \cup B \Leftrightarrow \mu_{c}(x)=\max \left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A}(x) \vee \mu_{B}(x)
$$

- Intersection:

$$
C=A \cap B \Leftrightarrow \mu_{c}(x)=\min \left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A}(x) \wedge \mu_{B}(x)
$$

## Set theoretic operations



## Combinations with negation



Not A



## Generalized negation

- General requirements:
- Boundary: $N(0)=1$ and $N(1)=0$
- Monotonicity: $N(a)>N(b)$ if $a<b$
- Involution: $\mathrm{N}(\mathrm{N}(\mathrm{a}))=\mathrm{a}$
- Two types of fuzzy complements:
- Sugeno's complement:

$$
N_{s}(a)=\frac{1-a}{1+s a}
$$

- Yager's complement:

$$
N_{w}(a)=\left(1-a^{w}\right)^{1 / w}
$$

## Sugeno's and Yager's complements

Sugeno's complement:

$$
N_{s}(a)=\frac{1-a}{1+s a}
$$

(a) Sugeno's Complements


Yager's complement:
$N_{w}(a)=\left(1-a^{w}\right)^{1 / w}$
(b) Yager's Complements


## Generalized intersection <br> (Triangular/T-norm, logical and)

- Basic requirements:
- Boundary: $T(0, a)=T(a, 0)=0, T(a, 1)=T(1, a)=a$
- Monotonicity: $\mathrm{T}(\mathrm{a}, \mathrm{b})<=\mathrm{T}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}<=\mathrm{c}$ and $\mathrm{b}<=\mathrm{d}$
- Commutativity: $\mathrm{T}(\mathrm{a}, \mathrm{b})=\mathrm{T}(\mathrm{b}, \mathrm{a})$
- Associativity: $\mathrm{T}(\mathrm{a}, \mathrm{T}(\mathrm{b}, \mathrm{c}))=\mathrm{T}(\mathrm{T}(\mathrm{a}, \mathrm{b}), \mathrm{c})$


## Generalized intersection

## (Triangular/T-norm)

- Examples:
- Minimum:
- Algebraic product:
- Bounded product:
- Drastic product:

$$
\begin{aligned}
& T(a, b)=\min (a, b) \\
& T(a, b)=a \cdot b \\
& T(a, b)=\max (0,(a+b-1)) \\
& T(a, b)=\left\{\begin{array}{ll}
a & \text { if } b=1 \\
b & \text { if } a=1 \\
0 & \text { otherwise }
\end{array}\right]
\end{aligned}
$$

## T-norm operator



## Generalized union (t-conorm)

- Basic requirements:
- Boundary: $S(1, a)=1, S(a, 0)=S(0, a)=a$
- Monotonicity: $\mathrm{S}(\mathrm{a}, \mathrm{b})<\mathrm{S}(\mathrm{c}, \mathrm{d})$ if $\mathrm{a}<\mathrm{c}$ and $\mathrm{b}<\mathrm{d}$
- Commutativity: $S(a, b)=S(b, a)$
- Associativity: S(a, S(b, c)) = S(S(a, b), c)
- Examples:
- Maximum:
- Algebraic sum:
- Bounded sum:

$$
\begin{aligned}
& S(a, b)=\max (a, b) \\
& S(a, b)=a+b-a \cdot b \\
& S(a, b)=\min (1,(a+b))
\end{aligned}
$$

- Drastic sum


## T-conorm operator



## Generalized De Morgan's Law

- T-norms and T-conorms are duals which support the generalization of DeMorgan's law:

```
- T(a,b) = N(S(N(a),N(b)))
- S(a,b) = N(T(N(a),N(b)))
```



